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Abstract The convergence of primal and dual central paths associated to entropy and
exponential functions, respectively, for semidefinite programming problem are studied in
this paper. It is proved that the primal path converges to the analytic center of the pri-
mal optimal set with respect to the entropy function, the dual path converges to a point
in the dual optimal set and the primal-dual path associated to this paths converges to a point
in the primal-dual optimal set. As an application, the generalized proximal point method with
the Kullback-Leibler distance applied to semidefinite programming problems is considered.
The convergence of the primal proximal sequence to the analytic center of the primal optimal
set with respect to the entropy function is established and the convergence of a particular
weighted dual proximal sequence to a point in the dual optimal set is obtained.

Keywords Generalized proximal point methods · Bregman distances · Central path ·
Semidefinite programming

1 Introduction

The first purpose of this paper is to analyze the convergence of primal and dual central paths
associated to entropy and exponential functions, respectively, for semidefinite programming
(SDP) problem. To be more precise, let us consider IRn the n-dimensional Euclidean space,
Sn the set of all symmetric n × n matrices, Sn+ the cone of positive semidefinite n × n
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symmetric matrices. Let denote X � 0 to mean that X ∈ Sn+, tr to mean the trace of n × n
matrices and set X • Y = tr XY for all X, Y ∈ Sn . The primal SDP problem becomes

(P) min{C • X : AX = b, X � 0},
where the data consist of C ∈ Sn , b ∈ IRm and a linear operator A : Sn → IRm , the primal
variable is X ∈ Sn . Adding the entropy penalty function in the objective function of (P), we
obtain its penalized version

(Pµ) min{C • X + µX • ln(X) : AX = b, X � 0}, µ > 0,

where X � 0 means that X ∈ Sn++. The associated dual problem to (P) is

(D) max{bT y : A∗y + S = C, S � 0},
where A∗ : IRm → Sn denotes the adjoint application associated to A and (S, y) ∈ Sn × IRm

are the dual variables. Adding the exponential penalty function in the objective function of
(D) we obtain its penalized version

(Dµ) max{bT y − µ tr e−S/µ−I : A∗y + S = C}, µ > 0.

The feasible primal and dual sets are denoted by F(P) = {X ∈ Sn : AX = b, X � 0}
and F(D) = {(S, y) ∈ Sn × IRm : A∗y + S = C, S � 0}, respectively. The interior of
primal and dual feasible sets are denoted by F0(P) = {X ∈ Sn : AX = b, X � 0} and
F0(D) = {(S, y) ∈ Sn × IRm : A∗y + S = C, S � 0} respectively. We also write F∗(P)

and F∗(D) for the sets of optimal solutions of (P) and (D) respectively.
Throughout this paper, we assume that the following two conditions hold without explicitly

mentioning them in the statements of our results.

(A1) A : Sn → IRm is a surjective linear operator;
(A2) F0(P) �= ∅ and F0(D) �= ∅.

Assumption A1 is not really crucial for our analysis but it is convenient to ensure that the
dual variables S and y are in one-to-one correspondence. Assumption A2 ensures that both
(P) and (D) have optimal solutions, the optimal values of (P) and (D) are equal and the sets
of their optimal solutions F∗(P) and F∗(D) are bounded (see, for example Todd [28]). It is
also important to ensure the existence of the central path. Indeed, our first goal is to prove
that assumption A2 implies that the problems (Pµ) and (Dµ) have unique solution X (µ) and
(S(µ), y(µ)), respectively. As a consequence, it is easy to see that X (µ) and S(µ) satisfy
the equality

S(µ) = −µ ln(X (µ)) − µI, µ > 0.

The sets of points {X (µ) : µ > 0} and {S(µ) : µ > 0} denote the primal and dual central
paths associated to entropy and exponential function, respectively.

It is worthwhile to mention that, the only divergence which is also a Bregman distance
arises from entropy function, see Iusem and Monteiro [14]. Although Doljansky and Teboulle
[8] has been studied Bregman distance associated to entropy function in SDP, the convergence
of the central path associated to it was lacking. Most interior point methods “follows” the
central path approximately to reach the optimal set and as we will show, the primal proximal
sequence rests on central path associated to Bregman distance. Also, we will prove that the
primal and dual central paths converge to a solution of (P) and (D), respectively, as µ goes to
0, i.e. the primal path converges to the analytic center of the primal optimal set with respect
to the entropy function, the dual path converges to a point in the dual optimal set and the
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primal-dual path associated to this paths converges to a point in the primal-dual optimal set.
So, we can think (Pµ) and (Dµ) as entropy and exponential penalty methods, respectively,
for solving SDP problems. Cominetti and San Martín [4] have investigated the asymptotic
behavior of the primal and dual trajectories associated to entropy and exponential penalty
functions, respectively, in linear program. In particular, they have obtained a characterization
of its limit points. More generally, Iusem and Monteiro [14] have given a characterization of
the limit point of the dual central path associated to a large class of penalty functions, including
exponential penalty function, for linearly constrained convex programming problems. Study
on central path associated to convex SDP problems with more general restrictions can be
found in Aulender and Héctor Ramírez [2].

Ours second goal is to apply the results obtained about the primal and dual central paths to
study the generalized proximal point method to solve the problem (P). This method generates
a sequence {Xk} ⊂ Sn++ with starting point X0 ∈ F0(P) according to the iteration

Xk+1 = arg min
X∈Sn++

{C•X + λk D(X, Xk) : AX = b}, (1)

where the sequence {λk} ⊂ IR++ satisfies
∑∞

k=0 λk
−1 = +∞ and D : Sn++ × Sn++ → IR is

the Kullback-Leibler distance (which is also a Bregman distance) defined by

D(X, Y ) = X • ln(X) − X • ln(Y ) + tr Y − tr X.

We will prove that the sequence {Xk} is contained in the primal central path. As a consequence,
both converge to the same specific optimal solution, namely, the analytic center of the primal
optimal set with respect to the generalized distance. This idea has, at first, appeared in Iusem
et al. [15], they proved this connection between the central path and the generalized proximal
point sequence in some special cases, including linear programming. On the other hand,
Doljansky and Teboulle [8] have introduced a generalized proximal method for convex SDP
problems and established its convergence properties. Besides, they study the correspondent
dual augmented Lagrangian method. Several works dealing with this issue include Aulender
and Teboulle [1] and Mosheyev and Zibulevski [22]. So, we are bringing together the ideas
of both Iusem et al. [15] and Doljansky and Teboulle [8].

The optimality condition for (1) determines the dual sequence {Sk} defined as

Sk = λk(ln(Xk) − ln(Xk+1)), k = 0, 1, 2, . . . .

From the dual sequence {Sk} we define the weighed dual sequence {S̄k} constructed as

S̄k =
k∑

j=0

λ j
−1µk S j , µk =

⎛

⎝
k∑

j=0

λ j
−1

⎞

⎠

−1

, k = 0, 1, 2, . . . .

We will prove that the sequence {S̄k} is contained in the dual central path. As a consequence, it
converges to a solution. Partial results regarding the behavior of the weighed dual sequence in
linear programming have been obtained in several papers including [6,16,24,25,29]. The full
convergence of the weighed dual sequence, for Bregman distances including the Kullback–
Leibler distance, for linearly constrained convex programming problems has been obtained
by Iusem and Monteiro [14].

At this point, it is important to emphasize that, though our convergence analysis of the
dual sequence is limited to the case of convex SDP, by no means we advocate the use of
the proximal point method for solving SDP problems, be it with the classical quadratic
regularization or with Bregman functions. The method is intended rather for the general
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nonlinear problem, and if we restrict our analysis to the case of a SDP problems it is just
because our analytical tools do not allow us to go further. We expect that the results in this
paper will be the first step toward a convergence analysis of the dual sequence in the general
nonlinear case.

This said, it is worthwhile to make some comments on the proximal method with Bregman
barriers:

Firs of all, we point out one advantage of the use of barriers appears in a very important
application of the proximal method: when it is applied to the dual of a constrained convex
optimization problem, the proximal point method gives rise to primal-dual methods, cal-
led Augmented Lagrangian algorithms, whose subproblems are always unconstrained. The
subproblems of the Augmented Lagrangian methods resulting from proximal method with
Bregman barriers have objective functions which are as smooth as the original constraints,
and which can be minimized with Newton’s method, see Doljansky and Teboulle [8].

If we compare now the proximal method with Bregman barriers for linearly constrained
convex optimization with the so called interior point algorithms, we observe that both share
unconstrained subproblems (after dealing in an appropriate way with the linear constraint)
which can be solved with fast second order methods. The difference lies in the fact that
the specific logarithmic barrier, typical of interior point methods, has a property, namely
self-concordance, which allows estimates of the number of iterations needed to achieve a
given accuracy, ensuring that the running time of the algorithm is bounded by a polynomial
function of an adequate measures of the size of the problem. This feature is not shared
by Bregman barriers, which in general are not self-concordant. Nevertheless, the proximal
point method with Bregman functions, and the resulting smooth Augmented Lagrangians,
have proved to be efficient tools in several specific instances, justifying thus the study of its
convergence properties, as has been done in the many papers mentioned above. A survey
on these augmented Lagrangian methods and its connection with the proximal point method
with Bregman distances can be found in Iusem [13].

The organization of our paper is as follows. In Subsect. 1.1, we list some basic notation
and terminology used in our presentation. In Sect. 2, we present the well definedness of
the primal-dual central path and establish some results about it. In Sect. 3, we describe the
proximal point method and establish its connection with the central path. As a consequence,
we prove the convergence of the weighed dual sequence. We end the paper by giving in
Sect. 4 some remarks and open problems.

1.1 Notation and terminology

The following notations and results of matrix analysis are used throughout our presentation,
they can be found in Horn and Johnson [12]. IRn denotes the n-dimensional Euclidean
space. IRn+ = {(x1, . . . , xn) ∈ IRn; xi ≥ 0 ∀ i = 1, . . . , n} and IRn++ = {(x1, . . . , xn) ∈
IRn; xi > 0 ∀ i = 1, . . . , n} denote nonnegative and positive orthant, respectively. The
set of all n × m matrices is denoted by IRn×m . The (i, j)th entry of a matrix X ∈ IRn×m

is denoted by Xi j and the j th column is denoted by X j . The transpose of X ∈ IRn×m is
denoted by X T . The set of all symmetric n × n matrices is denoted by Sn . The cone of
positive semidefinite (resp., definite) n ×n symmetric matrices is denoted by Sn+ (resp., Sn++)
and ∂Sn+ denotes the boundary of Sn+. X � 0 means that X ∈ Sn+ and X � 0 means that
X ∈ Sn++. The trace of a matrix X ∈ IRn×n is denoted by tr X ≡ ∑p

i=1 Xii . Given X and Y

in IRn×m , the inner product between them is defined as X •Y ≡ tr X T Y = ∑n,m
i=1, j=1 Xi j Yi j .

The Frobenius norm of the matrix X is defined as ‖X‖ ≡ (X • X)1/2. The submatrix X J K
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of X is the matrix whose entries lie in the rows of X indexed by the set J and the columns
indexed by the set K where J and K are two subsets of {1, . . . , n} . For square matrices X ,
X J J is called a principal submatrix of M, which is denoted simply by X J .

For a linear operator A : Sn → IRm , its adjoint is the unique linear operator A∗ : IRm →
Sn satisfying 〈AX, y〉 = 〈X, A∗y〉 for all X and y. The image and null spaces of a linear
operator A will be denoted by Im (A) and Null(A), respectively.

The vector of eigenvalues of a n ×n matrix X will be denoted by λ(X) = (λ1(X), . . . , λn

(X))T , where the eigenvalues are ordered as λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Lemma 1.1 For any X, Y ∈ Sn, X • Y � λ(X)T λ(Y ).

Proof See, for example, Dym [9], Lemma 23.16, p. 507. ��

2 Primal, dual and primal-dual central paths

In this section we study the convergence of primal and dual central paths associated to the
entropy and exponential penalty functions, respectively, for SDP problems. We are going to
prove that the central path is well defined, is an analytic curve, bounded and that all its cluster
points are solutions of the primal and dual problems, respectively.

The primal central path to the Problem (P), with respect to the entropy penalty function
Sn++ � X �→ X • ln(X), is the set of points {X (µ) : µ > 0} where X (µ) is defined as

X (µ) = argmin{C • X + µX • ln(X) : AX = b, X � 0}, µ > 0, (2)

i.e. X (µ) is the solution of the problem (Pµ).

Theorem 2.1 The primal central path is well defined and is in F0(P).

Proof For each µ > 0 we define φµ : Sn++ → IR by φµ(X) = C • X + µX • ln(X). The
function φµ(·) is strictly convex and extends continuously to Sn+ with the convention that
0 ln 0 = 0. Its gradient is given by ∇φµ(X) = C + µ ln(X) + µI and e−(C+µI )/µ ∈ Sn++
is the unique minimizer. Take X̃ ∈ F0(P), thus L = {X ∈ Sn+ : φµ(X) � φµ(X̃)} is
bounded and nonempty and as φµ(·) is continuous in Sn+ we conclude that L is compact and
nonempty. Because F(P) is closed and nonempty we have that L∩F(P) is also compact and
nonempty. Therefore, the strictly convexity of φµ(·) implies that it has a unique minimizer
X (µ) ∈ F(P), which implies that the primal central path is well defined.

It remains to show that X (µ) ∈ F0(P). Assume by contradiction that X (µ) ∈ ∂F(P) =
{X ∈ Sn : AX = b, X � 0, det X = 0}, where det X denotes the determinant of the matrix
X . Define

Zε = (1 − ε)X (µ) + ε X̃ ,

where ε ∈ (0, 1). Then, as X̃ ∈ F0(P), X (µ) ∈ ∂ F(P), ε ∈ (0, 1) and F0(P) is convex,
we conclude that Zε ∈ F0(P) for all ε ∈ (0, 1). Now combining definitions of X (µ) and Zε

with convexity of φµ(·) after some algebraic manipulation we obtain

0 � φµ(Zε) − φµ(X (µ)) � ∇φµ(Zε) • (Zε − X (µ)) = ε

1 − ε
∇φµ(Zε) • (X̃ − Zε),
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which implies 0 � ∇φµ(Zε) • (X̃ − Zε). So, from Lemma 1.1

0 � ∇φµ(Zε) • (X̃ − Zε) = (C + µ ln(Zε) + µI ) • (X̃ − Zε)

= µ ln(Zε) • X̃ − C • Zε − µ ln(Zε) • Zε − µI • Zε

+ (C + µI ) • X̃

� µ

n∑

i=1

λi (X̃)λi (ln(Zε)) − φµ(Zε) − µI • Zε + (C + µI ) • X̃ .

Since above inequality holds for all ε ∈ (0, 1), letting ε goes to 0 we obtain an absurd. Indeed,
as we are under the hypothesis X (µ) ∈ ∂F(P), using the fact that Zε goes to X (µ), µ > 0,
X̃ � 0 and the function φµ is continuous, the right side of the above inequality goes to −∞.
Therefore, this absurd implies the desired result. ��

Applying Lagrange theorem to (Pµ) we obtain that X (µ), as defined in (2), satisfies the
system

AX = b, X � 0,

A∗y + S = C,

S + µ ln(X) + µI = 0, µ > 0.

(3)

for some (S(µ), y(µ)) ∈ Sn × IRm . Note that Theorem 2.1 implies that (3) has unique
solution. Moreover, (3) also gives necessary and sufficient condition for optimality in the
dual. So,

S(µ) = −µ ln(X (µ)) − µI, µ > 0, (4)

is the unique solution of (Dµ), for some y(µ) ∈ IRm , i.e.,

S(µ) = argmax{bT y − µ tr e−S/µ−I : A∗y + S = C}, µ > 0. (5)

The dual central path associated to (P) is the set of points {S(µ) : µ > 0}, where S(µ)

satisfies (5), or equivalently (4), and the set of points {(X (µ), y(µ), S(µ)) : µ > 0} denotes
the primal-dual central path which is the unique solution of (4). Now, we are going to prove
that the primal-dual central path is an analytic curve. It will follows from a straightforward
application of the implicit function theorem that deals with analytic functions, as given, e.g.,
in Dieudonné [7], Theorem 10.2.4, p. 268.

Theorem 2.2 The primal-dual central path is an analytic curve contained in Sn++× IRm ×Sn.

Proof First of all, we introduce the map � : Sn++ × IRm × Sn × IR++ → IRm × Sn × Sn

defined by

�(X, y, S, µ) = (AX − b, A∗y + S − C, µ∇ϕ(X) + S
)
,

where ϕ : Sn++ → IR is given by ϕ(X) = X • ln(X). Note that �(X, y, S, µ) = 0 is
equivalent to the system (3). Since the central path is the unique solution of the system (3)
we have that �(X (µ), y(µ), S(µ), µ)= 0, for all µ > 0. So, as � is an analytic function
the statement follows from the implicit function theorem by showing that its derivative with
respect to (X, y, S) is nonsingular everywhere. To show that the derivative of � is nonsingular
it is sufficient to prove that its null-space is the trivial one. Assume that

∇(X,y,S)�(X, y, S, µ)(U, v, W ) = 0,
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equivalently,

AU = 0,

A∗v + W = 0,

µ∇2ϕ(X (µ))U + W = 0.

(6)

Last equation of (6) implies that W = −µ∇2ϕ(X (µ))U . Substituting in the second equation
of (6) we obtain µU = (∇2ϕ(X (µ)))−1A∗v and in view of first equation
A(∇2ϕ(X (µ)))−1A∗v = 0. Finally, as ∇2ϕ(X (µ)) is positive definite and A is surjective
we have that A(∇2ϕ(X (µ)))−1A∗ is nonsingular, thus latter equality implies that v = 0 and
consequently W = U = 0. Therefore, the derivative of � is nonsingular and the statement
follows. ��

The Theorem 2.1 implies that the primal central path is well defined and is in F0(P). So,
for all µ > 0, we have from (3) that

µ ln(X (µ)) + µI = −C + A∗y(µ), (7)

for some y(µ) ∈ IRm .

Proposition 2.1 The the following statements hold:

(i) the function 0 < µ �→ X (µ) • ln(X (µ)) is non-increasing;
(ii) the set {X (µ) : 0 < µ ≤ µ̄} is bounded, for each µ̄ > 0;

(iii) all cluster points of the primal central path are solutions of the Problem (P).

Proof To simplify the notations let ϕ : Sn++ → IR be given by ϕ(X) = X • ln(X). So, (7)
is equivalent to

µ∇ϕ(X (µ)) = −C + A∗y(µ). (8)

Take µ1, µ2 > 0 with µ1 < µ2. Since ϕ is convex, see the Appendix, and X (µ1)− X (µ2) ∈
Null A we have from (8) that

µ1(ϕ(X (µ1)−ϕ(X (µ2)) � µ1∇ϕ(X (µ1)) • (X (µ1) − X (µ2))= −C • (X (µ1) − X (µ2))

and

µ2(ϕ(X (µ2)−ϕ(X (µ1)) � µ2∇ϕ(X (µ2)) • (X (µ2) − X (µ1))= −C • (X (µ2)−X (µ1)).

Now, combining the latter two equations we obtain that (µ1 −µ2)(ϕ(X (µ1)−ϕ(X (µ2)) � 0
and as µ1 < µ2 we have that ϕ(X (µ2)) � ϕ(X (µ1)). So, the statement (i) is established.

Now, fix µ̄ > 0. Similar argument used to prove item (i) implies that

µ(ϕ(X (µ) − ϕ(X (µ̄)) � −C • (X (µ) − X (µ̄)),

for all 0 < µ < µ̄. From item (i) we have that 0 � ϕ(X (µ)) − ϕ(X (µ̄)), for all 0<µ<µ̄,
then above equation implies that C • X (µ) � C • X (µ̄), for all 0 < µ < µ̄. So,

{X (µ) : 0 < µ < µ̄} ⊂ {X ∈ F(P) : C • X � C • X (µ̄)}.
Since the function F(P) � X �→ C • X is convex and has a sub-level F∗(P) non-empty and
bounded, all its sub-level are bounded. So, the sub-level set {X ∈ F(P) : C • X � C • X (µ̄)}
is bounded. Therefore, the statement (ii) follows from the last inclusion.

Let X̄ be a cluster point of {X (µ) : µ > 0}. First, note that AX̄ = b and X̄ � 0 , i.e.,
X̄ ∈ F(P). Let {µk} be a sequence of positive numbers such that limk→+∞ µk = 0 and
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limk→+∞ X (µk) = X̄ . Take X∗ a solution of the Problem (P) and X ∈ F0(P). For ε > 0,
define

Y (ε) = (1 − ε)X∗ + εX.

Due the fact that X∗ ∈ ∂F0(P), X ∈ F0(P) and F0(P) is convex we have Y (ε) ∈ F0(P),
for ε ∈ (0, 1]. From (2) we have

C • X (µk) + µkϕ(X (µk)) � C • Y (ε) + µkϕ(Y (ε)),

or,

µk(ϕ(X (µk)) − ϕ(Y (ε))) � C • (Y (ε) − X (µk)).

Now, since ϕ is convex and Y (ε) ∈ F0(P), it easy to conclude from above inequality that

µk∇ϕ(Y (ε)) • (X (µk) − Y (ε)) � C • (Y (ε) − X (µk)).

Thus, taking limits in the latter inequality as k goes to +∞ we obtain 0 � C • (Y (ε) − X̄).
In this inequality, if ε tends to 0, it gives

0 � C • (X∗ − X̄), or equivalently, C • X̄ � C • X∗.

Therefore, as X∗ is a solution of the Problem (P) and X̄ ∈ F(P), we have from above
equation that X̄ is also solution of the Problem (P) and the proof of the statement (iii) is
concluded. ��
Theorem 2.3 Let Xc ∈ Sn+ be the analytic center of F∗(P), i.e., the unique point satisfying

Xc = argmin{X • ln(X) : X ∈ F∗(P)}. (9)

Then limµ→0 X (µ) = Xc.

Proof To simplify the notations let ϕ : Sn++ → IR the function defined in the proof of the
above proposition. Using the convention 0 ln 0 = 0, it is not hard to see that ϕ is continuous in
Sn+. Take X̄ a cluster point of the primal central path and a sequence of positive numbers {µk}
such that limk→+∞ µk = 0 and limk→+∞ X (µk) = X̄ . Note that, from Proposition 2.1(i i i),
implies that X̄ ∈ F∗(P). So, it is feasible for the problem in (9). Now, we are going to prove
that X̄ is a solution to the problem in (9). From (3) we have C +µk∇ϕ(X (µk)) = A∗y(µk),
for some y(µk) ∈ IRm . So,

µk∇ϕ(X (µk)) • (X − X (µk)) = (A∗y(µk) − C) • (X − X (µk)),

for all X ∈ F∗(P). Using the convexity of ϕ and the fact that X − X (µk) ∈ Null(A) the
latter equation becomes

µk(ϕ(X (µk)) − ϕ(X)) � C • X − C • X (µk).

Because X ∈ F∗(P) and µk > 0, it follows from the latter inequality that ϕ(X (µk)) � ϕ(X).
Now, as ϕ is continuous we can take limits, as k goes to +∞, in this inequality to conclude
that ϕ(X̄) � ϕ(X), i.e., X̄ • ln(X̄) � X • ln(X), for all X ∈ F∗(P). Thus, any cluster
point of the primal central path satisfies (9). Now, since F∗(P) is compact and the function
Sn++ � X �→ X • ln(X) is strictly convex, see the Appendix, the problem in (9) has unique
solution Xc. So, the primal central path has unique cluster point. Therefore, the primal central
path converges to Xc and the theorem is proved. ��
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In the next proposition our goal is to state and prove that the dual central path is bounded,
as µ goes to 0, and all its cluster points are solutions of the problem (D).

Proposition 2.2 The following statements hold:
(i) the set {S(µ) : 0 < µ ≤ µ̄} is bounded, for each µ̄ > 0;

(ii) all cluster points of the dual central path are solutions of the problem (D).

Proof To prove item (i), let X0 and S0 be strictly feasible for (P) and (D), respectively.
Orthogonality relation implies that

(X (µ) − X0) • (S(µ) − S0) = 0, µ > 0.

Since X (µ) � 0 and S0 � 0, simple algebraic manipulations in above equation yield
X0 • S(µ) ≤ X (µ) • S(µ) + X0 • S0. Now, combining this inequality with (4) we obtain

X0 • S(µ) ≤ −µX (µ) • ln(X (µ)) − µ tr(X (µ)) + X0 • S0.

Then, as X (µ) � 0, use Proposition 2.1(i) and µ > 0 in the last inequality to get

X0 • S(µ) ≤ −µX (µ̄) • ln(X (µ̄)) + X0 • S0, (10)

for all 0 < µ ≤ µ̄. We remark that if S(µ) is positive semidefinite for all µ ∈ (0, µ̄] then
we are done, but we cannot ensure it, so, we have to go further. First, as X (µ) ∈ Sn++ there
exists an orthogonal matrix Q(µ) such that

X (µ) = QT (µ)�(µ)Q(µ)

where �(µ) ∈ Sn++ is a diagonal matrix whose diagonal elements are the eigenvalues of
X (µ). From (4), we obtain

S(µ) = QT (µ)(−µ(ln(�(µ)) + I ))Q(µ), (11)

where −µ(ln(�(µ)) + I ) = diag(−µ(ln(λ1(X (µ)) + 1), . . . ,−µ(ln(λn(X (µ)) + 1)). Let
Xc ∈ Sn+ be the analytic center of F∗(P) and let

B := {
j : λ j (Xc) > 0

}
and B̃ := { j : λ j (Xc) = 0}.

From Theorem 2.3 we have that Xc = limµ→0 X (µ). So, it is easy to show that

lim
µ→0

−µ(ln(�(µ)B) + IB) = 0, (12)

and there exists µ̃ > 0 such that for all 0 < µ < µ̃ ≤ µ̄ there holds

− µ(ln(�(µ)B̃) + IB̃) � 0. (13)

Combining Eqs. (11), (12) and (13) it simple to conclude that for all 0 < µ < µ̃ ≤ µ̄

S(µ) = QT (µ) (−µ(ln(�(µ)) + I )) Q(µ) � 0. (14)

Set 	(µ) := −µ(ln(�(µ)) + I ). Thus, (12) implies that 	(µ)B goes to the null matrix,
as µ goes to 0, and (13) implies that 	(µ)B̃ is positive definite. It follows from (11) that
S(µ) = QT (µ)	(µ)Q(µ), hence

X0 • S(µ) = (Q(µ)X0 QT (µ))B • 	(µ)B + (Q(µ)X0 QT (µ))B̃ • 	(µ)B̃ .

As 	(µ)B̃ � 0 and (QT (µ)X0 Q(µ))B̃ � 0 we have that

λmin((Q(µ)X0 QT (µ))B̃)‖	(µ)B̃‖ � (Q(µ)X0 QT (µ))B̃ • 	(µ)B̃ .
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Thus, combining the above equation with λmin(X0) ≤ λmin((Q(µ)X0 QT (µ))B̃) (see in
Horn and Johnson [12], Theorem 4.3.15, p. 189) we obtain

‖	(µ)B̃‖ ≤ X0 • S(µ) − (Q(µ)X0 QT (µ))B • 	(µ)B

λmin(X0)
.

Because 	(µ)B goes to the null matrix as µ goes to 0 and Q(µ) is an orthogonal matrix,
last inequality together with (10) imply that 	(µ)B̃ is bounded as µ goes to 0. Therefore, as

‖S(µ)‖2 = ‖	(µ)B‖2 + ‖	(µ)B̃‖2,

	(µ)B and 	(µ)B̃ are bounded as µ goes to 0, we conclude that {S(µ) : 0 < µ ≤ µ̄} is
bounded. So, the statement (i) is established.

For proving item (i i), let S̄ be a cluster point of the dual central path. Note that it is
sufficient to show that

A∗ ȳ + S̄ = C, X∗ S̄ = 0, S̄ � 0, (15)

for some ȳ ∈ IRm and X∗ ∈ F∗(P). Since the dual central path satisfies the second equation in
(3) we just have to show that S̄ satisfies the last two equations in (15). Let {µk} be a sequence
such that limk→+∞ µk = 0 and S̄ = limk→+∞ S(µk). First note that X (µ) ln(X (µ)) is
bounded as µ goes to 0 and from Theorem 2.3 we have that Xc = limµ→0 X (µ). Thus it
follows from (4) that

Xc S̄ = lim
k→+∞ X (µk)S(µk) = − lim

k→+∞(µk X (µk) ln(X (µk)) + µk X (µk)) = 0.

As Xc ∈ F∗(P) the second relation in (15) holds. Finally, it remains to show the third relation
in (15). Using the same notation to prove item (i), we have from (11) that

S̄ = lim
k→+∞ S(µk) = lim

k→+∞(QT (µk)(−µk(ln(�(µk)) + I )Q(µk)). (16)

Because Q(µk) is orthogonal for all k, we can assume without loss of generality that
limk→+∞ Q(µk) = Q. Since −µk(ln(�(µk)) + I ) converges as k goes to +∞, thus we
conclude from (14) that

S̄B = lim
k→+∞ S(µk)B = 0, S̄B̃ = lim

k→+∞ S(µk)B̃ � 0.

Hence, from last equation and (16) we have that S̄ � 0. Therefore, the third relation in (15)
is proved and statement (i i) is established. ��

The Proposition 2.2 extends to SDP the Proposition 3.1 of Cominetti and San Martín [4].
Now, we are going to prove the convergence of the primal-dual central path using result of
the theory of semianalytic sets due to Lojasiewicz [21]. It is worth pointing out that in our
proof the key arguments are the same of Halická et al. [10].

Definition 2.1 A subset W ⊆ IRn is called a semianalytic set if it is described by a finite
union of sets

{x ∈ IRn : f1(x) = 0, . . . , fm(x) = 0, g1(x) > 0, . . . , gl(x) > 0},
where f1, . . . , fm, g1, . . . , gl are real analytic functions.

Lemma 2.1 (Curve selection lemma) Let W ⊆ IRn be a semianalytic set. If 0 ∈ W − W ,
where W is the closure of W , then there exists some ε > 0 and a real analytic curve
α : [0, ε) → W with α(0) = 0 and α(t) ∈ W for t ∈ (0, ε).
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Proof See, Lojasiewicz [21], Proposition 2, p. 103. ��
A particular version of this lemma was used by Kojima et al. [18] and Halická et al. [10], to
prove the convergence of the central path, in a different setting. Other applications of this
lemma in mathematical programming can be found in Bolte et al. [3] and Papa Quiroz and
Roberto Oliveira [23]. This lemma has been used in other contexts, see for example Kurdyka
et al. [20] and its references. For a more general version of this lemma, see Shiota [26] ,
property I.2.1.7 on p. 42.

Lemma 2.2 Let f : I → IR be an analytic function such that f (x) = 0 for all x ∈ U,
where U ⊂ I , is a set with a cluster point x0 ∈ I . Then f (x) = 0 for all x ∈ I .

Proof See, for example, Krantz and Parks [19], Corollary 1.2.6, p. 14. ��
Theorem 2.4 The primal-dual central path converges.

Proof From Propositions 2.1 and 2.2 we have that primal-dual central path is bounded.
Take (X∗, y∗, S∗) a cluster point of the primal-dual central path and let {µk} be a sequence
of positive numbers such that limk→+∞ µk = 0 and limk→+∞(X (µk), y(µk), S(µk)) =
(X∗, y∗, S∗). Let W be a semianalytic set defined by

W =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(X̄ , ȳ, S̄, µ) ∈ Sn++ × IRm × Sn × IR++ :

AX̄ = 0
A∗ ȳ + S̄ = 0

(S̄ + S∗) + µ ln(X̄ + X∗) + µI = 0
X̄ + X∗ � 0

µ > 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Note that the zero element belongs to W − W . Indeed, consider the sequence

(X̄k, ȳk, S̄k, µk) := (X (µk) − X∗, y(µk) − y∗, S(µk) − S∗, µk).

Obviously, (X̄k, ȳk, S̄k, µk) ∈ W . Thus, as limk→+∞(X (µk), y(µk), S(µk)) = (X∗, y∗, S∗)
we have that

lim
k→+∞(X̄k, ȳk, S̄k, µk) = (0n×n, 0m, 0n×n, 0).

So, Lemma 2.1 implies the existence of an ε > 0 and an analytic function α : [0, ε) �→ W
with α(0) = 0 and α(t) = (X̄(t), ȳ(t), S̄(t), µ(t)) ∈ W for t ∈ (0, ε). Now, since the system
that defines the central path has a unique solution, it easy to see that the system that defines
W also has a unique solution given by

X̄(t) = X (µ(t)) − X∗, ȳ(t) = y(µ(t)) − y∗, S̄(t) = S(µ(t)) − S∗, µ(t) > 0,

for t>0. Asµ(0)= 0, limk→+∞ µk = 0 and limk→+∞(X (µk), y(µk), S(µk))= (X∗, y∗, S∗)
above equalities imply

lim
t↓0

X (µ(t)) = X∗, lim
t↓0

y(µ(t)) = y∗, lim
t↓0

S(µ(t)) = S∗, lim
t↓0

µ(t) = 0.

Since µ : [0, ε) �→ IR is a real analytic function satisfying µ(t) > 0 on (0, ε) and µ(0) = 0,
we must have that µ′(0) � 0. Thus, we have two possibilities:

(i) µ′(0) > 0;
(ii) µ′(0) = 0.
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If µ′(0) > 0, there exists an interval (0, δ) where µ′(t) > 0. In this case, µ is increasing
which implies that it is invertible in this interval. Now, if µ′(0) = 0 we claim that there
exists an interval (0, δ) where µ′(t) > 0. Otherwise, there exists a sequence {tk} in (0, ε)

such that limk→∞ tk = 0 and µ′(tk) = 0. As µ is a analytic we obtain from Lemma 2.2 that
µ′(t) = 0 for all t ∈ [0, ε) or equivalently µ is constant in [0, ε). Because, µ(0) = 0 we
conclude µ(t) = 0 for all t ∈ [0, ε), but this is an absurd. So, the claim is established. As a
consequence µ is invertible in this interval. Therefore, in any of the two possibilities, there
exists the inverse function µ−1 : [0, µ(δ)) → [0, δ) with µ−1(0) = 0. This implies that

lim
s→0+ X (s) = lim

s→0+ X (µ(µ−1(s))) = lim
s→0+ X̄(µ−1(s)) + X∗ = X∗.

Similarly, lims→0+ y(s) = y∗, lims→0+ S(s) = S∗ and the result follows. ��
Cominetti and San Martín [4] have obtained the characterization of the limit point of the

primal-dual central path associated to the entropy-exponential penalty in linear programming.
The above theorem guarantees the convergence of the primal-dual central path to SDP. In
Theorem 2.3 above the characterization of the limit point is obtained only with respect to
primal central path. The characterization of the limit point for the dual central path is an open
problem.

3 Central paths and generalized proximal point methods

In this section we study a generalized proximal point method to solve the problem (P) and
present some convergence results for it. In particular, we are going to prove that the primal
and weighed dual sequences are contained in the primal and dual central paths, respectively.
Consequently, both converge. It is worthwhile to mention that our goal in this section is to
bring to SDP context the ideas of Iusem et al. [15] and Iusem and Monteiro [14].

We begin with the Kullback–Leibler distance D : Sn++ × Sn++ → IR given by

D(X, Y ) = X • ln(X) − X • ln(Y ) + tr Y − tr X.

The last function can also be seen as a Bregman distance associated to the entropy penalty
function ϕ(X) = X • ln(X) considered in Doljansky and Teboulle [8].

Remark 3.1 For each fixed Y ∈ Sn++ it is to easy see that D(., Y ) is C2, strictly convex and
can be continuously extended to Sn+ with the convention 0 ln 0 = 0. Also, note that D(., Y )

differ from the entropy function by affine term. So, is not had to see that all results from
Sect. 2 can be proved to this penalty function by following the same pattern used to prove
them for entropy penalty function.

The primal central path to the Problem (P), with respect to the function D(., X0), is the
set of points {X (µ) : µ > 0}, where X (µ) is defined as

X (µ) = argminX∈Sn++{C • X + µD(X, X0) : AX = b}, µ > 0. (17)

Theorem 3.1 The following statements hold:
(i) the primal central path with respect to the function D(., X0) is well defined and is in

F0(P);
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(i) if X̂ ∈ Sn+ is the analytic center of F∗(P), i.e., the unique point satisfying

X̂ = argmin{D(X, X0) : X ∈ F∗(P)},
then limµ→0 X (µ) = X̂ .

Proof (i) and (ii) follow from Remark 3.1 and similar arguments used to prove Theorems
2.1 and 2.3, respectively. ��

Theorem 3.1 (i) guarantees that the primal central path to the Problem (P), with respect
to the function D(., X0), is well defined and is in F0(P). So, for all µ > 0, we have from
(17) that

C + µ(ln(X (µ) − ln(X0)) = A∗y(µ),

for some y(µ) ∈ IRm .
The dual central path associated to the Problem (P), with respect to the function D(., X0),

is the set of points {S(µ) : µ > 0}, where S(µ) satisfies

S(µ) = −µ(ln(X (µ)) − ln(X0)), µ > 0,

or equivalently, (S(µ), y(µ)) is the unique solution of the optimization problem

max
{

bT y − µ tr e−S/µ+ln(X0) : A∗y + S = C
}

, µ > 0.

The set {(X (µ), y(µ), S(µ)) : µ > 0} denotes the primal-dual central path with respect
to the function D(., X0), and it is the unique solution of the following system of nonlinear
equations

AX = b, X � 0,

A∗y + S = C,

S + µ ln(X) − µ ln(X0) = 0, µ > 0.

(18)

Remark 3.2 Similarly to the proof of the Theorem 2.2 we can prove that the primal-dual cen-
tral path, with respect to the function D(., X0), is an analytic curve contained in
Sn++ × IRm × Sn .

Theorem 3.2 The primal-dual central path with respect to the function D(., X0) converges.

Proof The proof follows similar arguments used to prove the Theorem 2.4. ��
The proximal point method with the generalized distance D, for solving the problem (P),

generates a sequence {Xk} ⊂ Sn++ with starting point X0 ∈ F0(P) and

Xk+1 = arg min
X∈Sn++

{C • X + λk D(X, Xk) : AX = b}, (19)

where the sequence {λk} ⊂ IR++ satisfies

∞∑

k=0

λk
−1 = +∞. (20)

From now on we refer to the above sequence {Xk} as primal proximal point sequence with
respect to D, associated to {λk} and starting point X0. Remark 3.1 and a similar argument
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used in the proof of Theorem 2.1 allow to prove the well-definedness of the proximal point
sequence. Moreover, (19) implies that {Xk} satisfies

C + λk(ln(Xk+1) − ln(Xk)) = A∗zk, (21)

for some sequence {zk} in IRm and k = 0, 1, 2, . . .. Also, the optimality condition for (19)
determines the dual sequence {Sk} defined as

Sk = λk (ln(Xk) − ln(Xk+1)) , k = 0, 1, 2, . . . . (22)

From the dual sequence {Sk} we define the weighed dual proximal sequence {S̄k} constructed
as

S̄k =
k∑

j=0

λ j
−1µk S j , (23)

where

µk =
⎛

⎝
k∑

j=0

λ j
−1

⎞

⎠

−1

,

for k = 0, 1, 2, . . ..

Theorem 3.3 Let {X (µ) : µ > 0} and {S(µ) : µ > 0} be the primal and dual central paths
associated to D(., X0), respectively. Suppose given a sequence {λk} ⊂ IR++ satisfying (20),
and the sequence {µk} defined as

µk =
⎛

⎝
k∑

j=0

λ j
−1

⎞

⎠

−1

, for k = 0, 1, 2 . . . . (24)

Then Xk+1 = X (µk) and S̄k = S(µk) for k = 0, 1, 2 . . ., where {Xk} and {S̄k} are the primal
and weighed dual sequences associated to {λk}, respectively. As a consequence,

lim
k→+∞(Xk, S̄k) = (X∗, S∗),

where (X∗, S∗) = limµ→0(X (µ), S(µ)).

Proof Let {Xk } and {Sk} be the primal and dual sequences, respectively. Now, From (19),
(21) and (22) we have that Xk and Sk satisfies

AXk+1 = b, Xk+1 � 0,

A∗zk + Sk = C,

Sk = λk(ln(Xk) − ln(Xk+1)), λk > 0

for some sequence {zk} in IRm and k = 0, 1, 2, . . .. From the last equation of the previous
system, it follows that

∑k
j=0(1/λ j )S j = (ln(X0)− ln(Xk+1)). Last expression together with

(23) and (24) imply that

S̄k = −µk(ln(Xk+1) − ln(X0)).

So, it is easy to conclude that Xk and S̄k satisfies

AXk+1 = b, Xk+1 � 0,

A∗ ȳk + S̄k = C,

S̄k + µk ln(Xk+1) − µk ln(X0) = 0, µk > 0.
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for ȳk = µk
∑k

j=0(1/λ j )z j , k = 0, 1, 2, . . .. So, the previous system and (18) imply

that Xk+1 = X (µk), ȳk = y(µk) and S̄k = S(µk). As {λk} satisfies (20) we have that
limk→+∞ µk = 0. Now, use the fact that limµ→0(X (µ), S(µ)) = (X∗, S∗) to conclude that
limk→+∞(Xk, S̄k) = (X∗, S∗), and the proof is complete. ��

With similar arguments used in the proof of Theorem 3 of Iusem et al. [15] we can prove
that, for each positive decreasing sequence {µk}, there exists a sequence {λk} ⊂ IR++
satisfying (20) such that the primal sequence {Xk} and the weighed dual sequence {S̄k}
associated to it satisfy Xk+1 = X (µk) and S̄k = S(µk), where {X (µ) : µ > 0} and
{S(µ) : µ > 0} are the primal and dual central paths associated to D(., X0), respectively.

4 Final remarks

In this paper we have studied the convergence of primal and dual central paths associated
to the entropy and exponential functions, respectively, for SDP problems. Cominetti and
San Martín [4] have investigated the asymptotic behavior of the primal and dual trajectories
associated to the entropy and exponential penalty functions, respectively, in linear program. In
particular, they have obtained a characterization of its limit points. More generally, Iusem and
Monteiro [14] have given a characterization of the limit of the dual central path associated to a
large class of penalty functions, including exponential penalty function, for linear constrained
convex programming problems. Partial characterizations of the limit point of the central path
with respect to the log-barrier function for SDP problems have been obtained by Sporre and
Forsgren [27], Halická et al. [11], and da Cruz Neto et al. [5]. For more general functions,
including the exponential penalty function, the characterization of the limit point of the dual
central path associated to them is an open problem.

We do not have considered the behavior of the dual sequence in the generalized proximal
method, its convergence with respect to entropy function is still a open problem even in linear
programming. Since, we do not know how to prove the convergence of the dual sequence
to the solution, we consider the weighted dual sequence and prove its convergence to the
solution of the dual semidefinite problem. The proof of this fact is in Theorem 3.3, since the
weighted dual sequence in on dual central path.

The characterization of the limit point of the primal sequence is obtained by combining
Theorems 3.2 and 3.3, because primal sequence in on dual central path and both converges
to Xc ∈ Sn+ the analytic center of F∗(P). This technique does not works to study the dual
sequence.

Appendix

Let f : (0,+∞) → IR a analytical function having the following expansion by power series

f (x) =
∞∑

i=0

ai xi . (25)

So, we define the function of matrix ϕ : Sn++ → IR as follows ϕ(X) = tr f (X), or equiva-
lently,

ϕ(X) =
∞∑

i=0

ai tr Xi . (26)
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Therefore, the gradient of ϕ is given by ∇ϕ(X) = f ′(X), i.e.,

∇ϕ(X) =
∞∑

i=1

ai ∇ tr Xi =
∞∑

i=1

i ai Xi−1
i . (27)

Indeed, as X is a symmetric matrix it easy to see that ∇ tr Xi = i Xi−1, for all i = 0, 1, 2, . . ..
Hence, because ϕ is an analytical function, taking derivative in (26) we conclude that (27)
holds.

Letting f (x) = x ln(x), in this case, ϕ(X) = X • ln(X) and we obtain that

∇ϕ(X) = ln(X) + I.

Let X, Y ∈ Sn++ with X �= Y . Using last equality we have, after simples manipulation, that

ϕ(X) − ϕ(Y ) − ∇ϕ(Y ) • (X − Y ) = X • ln(X) − X • ln(Y ) + I • Y − I • X. (28)

On the other hand, as X, Y ∈ Sn++, there exist Q and R orthonormal matrices and � =
diag(λ1, . . . , λn), � = diag(ω1, . . . , ωn) diagonal matrices, satisfying λ1 ≥ · · · ≥ λn and
ω1 ≥ · · · ≥ ωn , such that

X = QT �Q, Y = RT �R. (29)

Hence, Lemma 1.1 implies that X • ln(Y ) ≤ ∑n
i=1 λi ln(ωi ). Thus, it follows from (28) and

(29) that

ϕ(X) − ϕ(Y ) − ∇ϕ(Y ) • (X − Y ) ≥
n∑

i=1

λi ln(λi ) −
n∑

i=1

λi ln(ωi ) +
n∑

i=1

ωi −
n∑

i=1

λi .

Now, let h : IRn++ → IRn the entropy function h(x1, . . . , xn) = ∑n
i=1 xi ln(xi ). As h is

strictly convex, gradient inequality gives

0 < h(λ) − h(ω) − ∇h(ω) • (λ − ω) =
n∑

i=1

λi ln(λi ) −
n∑

i=1

λi ln(ωi ) +
n∑

i=1

ωi −
n∑

i=1

λi ,

where λ = (λ1, . . . , λn) and ω = (ω1, . . . , ωn). So, combining two above equation we
conclude that

ϕ(X) > ϕ(Y ) + ∇ϕ(Y ) • (X − Y ), X, Y ∈ Sn++, X �= Y.

and therefore we have that ϕ is strictly convex.
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